Medical Management of Biochemical Weapons Casualties:
An Introduction

William Schecter, M.D.
Professor of Clinical Surgery
University of California, San Francisco
Chief of Surgery
San Francisco General Hospital
When the drum beats to quarters is now a time of fearful expectation, and it is now the surgeon feels how much the nature of the wounds which might be brought to him ought to have occupied his mind in previous study.

Sir Charles Bell, 1855
Objectives

• Review the history of biochemical weapons
• Understand the major types of chemical weapons available and the principles of medical management
• Understand the major types of biological weapons available and the medical management of those most likely to be employed in a civilian attack
Terrorism: the use of violence or the threat of violence to effect political change.

Osama bin Laden

Sheikh Ahmed Yassin
Von Clausewitz (1780-1831)

- "War is a continuation of ‘Politik’ (Policy or Politics) – by other means"
ברקע רעב
בָּאָרָה לָאָרָה
וכָּרָה בָּרָה
בְּרָם בָּרָה
בָּרָה בָּרָה
כָּרָה בָּרָה
וכָּרָה בָּרָה
בָּרָה בָּרָה
בָּאָרָה לָאָרָה
Delium 423 BCE
Plague – Caffa 1346
Smallpox and the French and Indian War

General Jeffrey Amherst approved Exchanging smallpox infested Blankets with Huron Indians In 1763 during Pontiac’s rebellion Resulting in decimation of the Indian foe.
Fritz Haber (1868-1934)

- Introduced chlorine gas
- Introduced phosgene gas
- Following World War 1 developed Hydrogen cyanide – Zyklon B
World War 1 Casualties

United Kingdom
- Phosgene
 - 20,015 casualties
 - 1895 deaths (9.4%)
- Mustard
 - 160,970 casualties
 - 4,167 deaths (2.5%)

United States
- Phosgene
 - 6834 casualties
 - 66 deaths (1%)
- Mustard
 - 27,711 casualties
 - 599 deaths (2.1%)
World War 1 Casualties

• One third of the 5 million WW1 casualties due to chemical weapons
• Pulmonary agents (chlorine and phosgene) were the most lethal
• The largest number of chemical casualties were due to mustard (all in the last year of the war)
The Interwar Years

• 1925 Geneva Protocol- Use of chemical and biological weapons is forbidden
• 1935 Eritrea- Italy uses mustard bombs to defeat Ethiopian troops
• 1936 Germany- Gerhart Schrader at IG Farben synthesizes TABUN an organophosphate anticholinesterase
• 1938 Germany- Schrader synthesizes a new compound- SARIN- 10x as potent as TABUN
• 1943 Germany – Nerve agent SOMAN synthesized
SS John Harvey
Bari Mustard Disaster 2 Dec 1943

617 casualties with a 14% fatality rate
Biological Warfare: Plague

- Ningpo, China Oct. 1940
 Japanese plane released 5kg of fleas
- 99 bubonic deaths followed by rodent die-off
- Chang-the, China Nov 1941
 lone Japanese plane released “strange particles—thousands of plague deaths ensue

Dr. Shiro Ishii
Unit 731
Vx

- Synthesized at Imperial Chemical Company 1953
- 1000 x more toxic than Sarin when applied to skin—a drop the size of a pinhead could cause death within 15 minutes
Egyptians dropped mustard gas on multiple occasions.

- January 1967, Kitaf, bombs dropped upwind of town. 95% of population of Kitaf dead within 50 minutes. All animals dead. Probable nerve agent.

- Additional attacks against Gahar, Gahas, Hofal, Gadr, Gadafa in 1967.
Iran-Iraq War 1980’s

- Mustard Agents used extensively
- Severe casualties evacuated to European hospitals
- UN panel estimated that 45,000 Iranians injured by Iraqi chemical weapons
Halabja - 1983

• Saddam Hussein gassed Kurdish villagers in Northern Iraq
• > 5,000 casualties
• Gas was a fast acting vapor – either cyanide or a nerve agent
Major Chemical Threats

- Pulmonary Agents
- Cyanide Agents
- Vesicants
- Nerve Agents
- Riot control and incapacitating agents
- Toxic industrial chemicals
Pulmonary Agents

- Chlorine
- Phosgene
- PFIB (perfluoroisobutylene)
Pulmonary Agents - Pathophysiology
Clinical Considerations

• Pulmonary Agents cause pulmonary edema
• Latent period- onset delayed by hours, objective signs appear later than symptoms
• Sudden death may occur due to airway obstruction or bronchospasm
Clinical Considerations

- Pneumonia common 3-5 days after injury
- Effects exacerbated by exertion
- No specific therapy
Clinical Considerations

• Mild exposure: Chest tightness, cough, exertional dyspnea

• Moderate exposure: above symptoms plus hoarseness, stridor and pulmonary edema within 2-4 hours

• Severe exposure: Massive pulmonary edema within 1 hour
Cyanide

Zyklon B (hydrocyanic acid)

Cremation Pits Auschwitz
1944
Cyanide - Military Operations

- Difficult to weaponize
- Very volatile - blows away
- Weapons inefficient – cyanide payload destroyed in 50% of munition delivery explosions
Current Threats

- Focused Targets: Terrorist attacks, homicides, suicides
- Household products: silver polish, rodenticides
- Industrial Hazards: chemical processing industry, metal plating, iron and steel mills, gold and silver mines
Hydrogen Cyanide

- Colorless liquid or gas
- Odor of bitter almonds
- Vapor density lighter than air
- Boils at 70 degrees F and freezes at 7 degrees F
- Highly water soluble
- Nonpersistent
Hydrogen Cyanide

• Colorless liquid or gas
• Odor of bitter almonds
• Vapor density lighter than air
• Boils at 70 degrees F and freezes at 7 degrees F
• Highly water soluble
• Nonpersistent

Cyanogen Chloride

• Colorless gas or liquid
• Pungent, biting odor
• Vapor density heavier than air
• Boils at 59 degrees F, freezes at 20 degrees F
• Slightly water soluble
• Nonpersistent
Chemistry of CN⁻

- High affinity for ions of transitional metals
 - Cobalt
 - Iron
 - Cytochromes (Fe²⁺, Fe³⁺)
 - Heme in Methemoglobin (Fe³⁺)
Pathophysiology

CN⁻ interrupts oxidative phosphorylation by binding to cytochrome a₃ in cytochrome oxidase

- Stable but not irreversible binding
- CN⁻ has higher affinity for Fe³⁺ in metHb
Antidote to Cyanide Poisoning

Hg$_0^2$ (Fe$^{2+}$) → Nitrite → MetHgb (Fe$^{3+}$)

CN$^-$ → Cyt a$_3$
Antidote to Cyanide Poisoning

\[\text{thiocyanates} + \text{sulfites} \rightarrow \text{CN}^- \]

\[\text{MetHgb (Fe}^{3+}\text{)} \rightarrow \text{CN}^- \]

\[\text{Thiosulfate} \rightarrow \text{CN}^- \]

\[\text{Urine} \]

- MetHgb (Fe\(^{3+}\))
- Thiosulfate
- Urine

\[\text{CN}^- \]
Classic Clinical Presentation
Hydrogen Cyanide
Moderate Exposure

- Bright red venous blood and skin
- Odor of bitter almonds
- Profound metabolic acidosis
Hydrogen Cyanide
Severe Exposure

- Tachypnea
- Rapid Loss of Consciousness
- Apnea
- Cardiac Arrest
Treatment of Cyanide Poisoning

• Amyl Nitrite – 0.3 ml ampules for inhalation – marked vasodilation – do not use if casualty conscious and able to stand

• Sodium Nitrite – comes in a 3% solution; give 10 cc (300mg) iv over a 3 minute period in adults. 0.2 ml/kg in children not to exceed 10 ml.
Treatment of Cyanide Poisoning

• Sodium Thiosulfate: give 50 cc of a 25% solution (250 mg/cc) = 12.5 grams. Administer over a 10 minute period immediately after nitrite administration
Vesicants

- Mustards
- Lewisite
- Phosgene oxime
Mustards

- Oily liquid
- Light yellow to brown in color
- Vapor heavier than air
- Liquid heavier than water
- Low volatility-persistent
- Causes bone marrow suppression
Treatment - Decontamination

• Early decontamination protects casualty
• Late decontamination protects medical personnel and facility
Nerve Agents

• Anti-cholinesterase
• Acetylcholine accumulates
• Effects due to excess Acetylcholine
 – Cholinergic crisis
Physical Properties of Nerve Agents

• Clear colorless liquid
 – Not nerve gas
• Boils > 150 °C
• Penetrates skin and clothing
Acetylcholine crossing synapse

Acetylcholine binding to Receptor initiating post Synaptic transmission

Cholinesterase binding to acetylcholine

Cholinesterase inactivated Due to binding with nerve agent
Effects of Cholinergic Crisis

• Muscarinic
 – Smooth muscles
 • Bronchoconstriction
 • Miosis
 • GI smooth muscle constriction – nausea, diarrhea
 – Glands - increased secretions from
 • Eyes, nose, mouth, airway, GI tract
 – Heart - Bradycardia
Effects of Cholinergic Crisis

• **Nicotinic**
 – Skeletal muscle
 • Fasciculations, twitching, fatigue, flaccid paralysis
 – Preganglionic
 • Tachycardia, hypertension
Heart Rate

- Muscarinic (vagal) - decrease
- Nicotinic (preganglionic) - increase
- May be high, low or normal
CNS Effects of Nerve Agents

• Large exposure
 – Loss of consciousness
 – Seizures
 – Apnea
 – Death

• Minor Exposure
 – Slowness in thinking, decision making
 – Poor concentration
Antidote to Organophosphates:
Atropine for Muscarinic Receptors

ACh and Atropine at Receptors

- **Nicotinic**
 - ACh
 - Atropine

- **Muscarinic**
 - ACh
 - Atropine
Atropine

• Starting dose 2-6 mg
• 2 mg every 5 minutes until
 – Secretions dry
 – Ventilation improved
• Usual dose (severe casualty) 15 – 20 mg
 – 1000s of mgs in insecticide poisoning
Antidote to Organophosphates: Oximes at Nicotinic Receptors

- Effects at Nicotinic receptors
 - Increase skeletal muscle strength
- No effects at muscarinic receptors
Action of Pralidoxime Chloride (2-PAM Cl)
Oximes

• Remove agent from enzyme unless aging has occurred
• Aging: agent-enzyme complex changes
• Oximes cannot reactivate enzyme after aging
• Aging times: Soman 2 minutes, Sarin 3-4 hours, others longer
Dose of Pralidoxime Cl

- 1 gram iv over 20-30 minutes
- To be given immediately after atropine
Aum Shinrikyo Sarin Attack
Tokyo subway 1995

30% solution of Sarin
Numbers seeking care
278 Tokyo medical facilities

• 5510 total
• Mild 984
• Moderate 37
• Severe 17
• Deaths 12
• Status unknown >300
Major Chemical Threats

- Pulmonary Agents
- Cyanide Agents
- Vesicants
- Nerve Agents
- Riot control and incapacitating agents
- Toxic industrial chemicals
Biological Weapons

- Pathogens
- Toxins
- Biomodulators (e.g. Agent Orange)
Bioterrorism Pathogens

• Bacteria
 – B. anthracis
 – S. typhi
 – S. typhimurium
 – Shigella species
 – Y. pestis
 – V cholerae
 – Rickettsia prowazekii

• Toxins
 – Botulinum toxin
 – Mycotoxins
 – SEB
 – Ricin

• Viruses
 – Variola (smallpox)
 – VHF
 • Ebola/Marburg
 • Lassa Fever
 • CCHF
Portals of Entry of Biological Agents

• Respiratory Tract
• GI Tract
• Skin/Mucus Membranes
Disease from Aerosolized Biologic Agents of most concern

- Aerosolized droplets 1-5 microns optimal for reaching lower respiratory tract
- Aerosols of some agents produce pulmonary syndromes (anthrax, plague, Q fever, SEB)
- Aerosols of most agents produce systemic illness (botulinum, most viruses)
Agents of Greatest Concern

- Anthrax
- Smallpox
- Plague
- Tularemia
- Botulinum Toxin
- VHF
Anthrax

- Gram positive spore forming non-motile rod
- 1876 Robert Koch – germ theory of disease
- 1881 Louis Pasteur – first live bacterial vaccine
Epidemiology

• Reservoir: Soil
• Herbivores infected during grazing
• Transmission to humans
 – Contact with infect animals and products
 – Ingestion of contaminated meat
 – Inhalation – industrial and weapons settings
Cutaneous Anthrax

- Malignant pustule
- 95% of all Anthrax infections
- 80-90% complete resolution
Anthrax Case 4 October 19, 2001

- 56 y.o. male postal worker
- 3 day history of fever, chills, malaise, chest heaviness, productive cough
Anthrax Case 4 October 23, 2001
Anthrax Treatment

• Post exposure prophylaxis: Ciprofloxacin 500 mg po bid 4-8 weeks

• Initial Inhalation Anthrax Treatment Protocol
 – Cipro 400 mg iv q 12h
 – or Doxycycline 100 mg iv q 12 h
 – Additional antimicrobials: Rifampin, Vanco, Imipenum, Clinda

• Vaccine: not available for civilian use

Sverdlovsk – April 4-May 15, 1979

- < 1 gram of anthrax spores released via air vent without filter
- 77 patients infected
- 66 deaths (87%)
Smallpox - Variola

- Infectious via aerosol
- No routine Vaccination
- Decreased potency
- Limited supply
- Transmissible
- 30% mortality
Smallpox - Treatment

• Vaccination within 3-4 days of exposure can prevent the disease in many patients and prevent death in most

• After 7 days of exposure, most “experts” would give vaccinia immunoglobulin as well

• No specific antiviral therapy
• Scenario: Al Qaida terrorists spray smallpox from aerosol cans in 3 shopping malls in Oklahoma City, Atlanta and Philadelphia.
• By day 13 of the scenario, smallpox had spread to 25 cities in the US and 15 countries.
• 11,000 individuals infected and 2600 dead by Day 13.
Plague

• Reservoir > 200 species of mammals
 – Rattus rattus
 – Squirrels, cats

• Vector > 80 species of fleas

• Person to person transmission via aerosol

Yersinia Pestis: Gram negative
Non-motile coccobacillus
Pneumonic Plague

• Primary or secondary (incubation 2-3 days)
• High fever, chills, malaise
• Hemoptysis
 – Pneumonia progresses rapidly
 – Respiratory failure and circulatory collapse
Plague: Diagnosis

Otherwise healthy young person
Hemoptysis
Think Plague
Especially if GNCB in sputum
Plague: Treatment

- Streptomycin 15 mg/kg IM or IV qd x 10 days or
- Doxycycline 200 mg iv x1 then 100 mg iv q 12 h
- Cipro 500 mg po/iv bid should also be effective
- Chloramphenicol for meningitis
- No vaccine
Tularemia – Rabbit Fever

- Gram negative non-motile coccobaccillus
- Reservoir:
 - Rabbits, squirrels, muskrats, cats
- Vectors:
 - Ticks, deerflies
Tularemia: Clinical Presentation

- Ulceroglandular:
- Glandular
- Occuloglandular
- Pharyngeal
- Typhoidal: nonspecific febrile illness without localization
Pneumonic Tularemia

- After inhalation (biological weapon)
- Secondary hematogenous spread after typhoidal form
- Vaccine available
Tularemia: Treatment

• Post exposure prophylaxis
 – Doxycycline 100mg po bid or
 – Ciprofloxacin 500mg po bid
• For treatment of established infection
 – Gentamycin 5 mg/kg iv qd
• Vaccine available but not currently recommended for prophylaxis
Toxins Relevant to Biological Warfare

- Botulinum Toxin
- Staph Enterotoxin B (SEB)
- Ricin
- T3 Mycotoxins (Yellow Rain)
Mechanism of Action

• Enters pre-synaptic nerve terminal
• Prevents release of Acetylcholine
 – Neuromuscular junction-flaccid paralysis
 – Cholinergic autonomic blockade
Botulism: Clinical Features

• Latent period: 24-36 hours after inhalation
• Symmetrical descending bulbar paralysis
 – Blurred vision, diplopia, ptosis, photophobia
 – Dysphonia, dysphagia
 – Flaccid paralysis
Botulism: Treatment

- Antitoxin
- Ventilatory support
- Intensive Care
- Recovery may be prolonged (months)
Viral Hemorrhagic Fevers

- Acute febrile illness
- Malaise, myalgia
- Petechiae, ecchymoses
- Diffuse hemorrhage
- Shock
Pathogens

- Areaviridae
 - Lassa Virus
- Phlebovirus
 - Rift Valley Fever
- Nairovirus
 - Crimea-Congo Hemorrhagic Fever
- Hantavirus

- Filoviridae
 - Ebola HF
 - Marburg HF
- Flaviviridae
 - Yellow Fever
 - Dengue HF
Mode of Transmission in Biological Weapon

Aerosol
Treatment of VHF

- Strict Isolation
- Supportive Care
- Ribavirin (available from the CDC on a compassionate use basis) otherwise
- No specific treatment
Chem-Bio Casualties

• Immediate Pulmonary
 – Phosgene
 – SEB
 – Vesicants
 – Cyanide

• Immediate Neurologic
 – Nerve Agents
 – Cyanide

• Delayed Pulmonary
 – Anthrax, Plague, Tularemia
 – Q Fever
 – Phosgene
 – SEB, Ricin, Vesicants
 – Phosgene

• Delayed Neurologic
 – Botulism
 – VEE
Further Study

In War, Resolution
In Defeat, Defiance
In Victory, Magnanimity
In Peace, Good Will

Winston S. Churchill
God Bless America
When you're wounded and left on Afghanistan's plains,
And the women come out to cut up what remains,
Jest roll to your rifle and blow out your brains
An' go to your Gawd like a soldier.
Anticholinesterases

- Carbamates
 - Physostigmine (Antilirium)
 - Pyridostigmine (Mestinon)
 - Neostigmine (Prostigmine)

- Organophosphates
 - “Nerve Agents”
 - Malathion
 - Diazinon
Unusual presentation of number or Type of patients to ER with unfamiliar Symptom complex

Duration of symptoms
Less than 24 hours

Consider exposure To toxin or chemical Algorithm 2

Yes

No

Consider exposure To infection Algorithm 3
Algorithm 2A

Many deaths within The first hour?
 Yes → Nerve agent, cyanide, Fast acting toxin
 No → Fever, septic shock within The first 24 hours?
 Yes → Algorithm 2B
 No → Is the skin red, painful or Blistered?
 Yes → Ricin
 No → Do most die within 2-3 days?
 Yes → SEB
 No → Mycotoxins
Algorithm 2B

No deaths in 1st hour
No fever in 1st day

Paralysis?

yes

Rapid appearance of Stridor, secretions, Fasciculations, coma
Seizures?

yes

Nerve agent

no

botulism

no

Cough, sob, High wbc?

yes

phosgene

no

Skin red Blistered?

Mustard, mycotoxin
Algorithm 3A

Sx > 24 hours

Dominant clinical signs

- diarrhea
 - bloody
 - no
 - yes
 - E. coli, Shigella, Salmonella, Ebola, Marburg
 - cholera

- respiratory

- Headache meningismus
 - VEE

- rash
 - See algorithm 3B

CXR findings? See next slide
Algorithm 3A (continued)

Resp sx . 24 hrs

CXR?

Segmental or Subsegmental Infiltrate?

- Tularemia
- Plague
- Q fever
- P mallei
- SEB

ARDS

Hilar Adenopathy

- Anthrax
- Plague
- Tularemia

Widened Mediastinum

- Anthrax
- Plague

Hantavirus
Algorithm 3B

Dominant sign rash > 24 hours

- **Ecchymotic**
 - Ebola/Marburg
 - Smallpox
 - Crimean-Congo HF

- **Pustular**
 - Smallpox
 - P. Mallei
 - P. Pseudomallei

- **Macuolopapular**
 - Smallpox
 - P. Mallei
 - P. Pseudomallei
 - Ebola/Marburg
 - Lassa fever
 - Crimean-Congo HF